Volume 10, Issue 2 (Journal OF Welding Science and Technology 2024)                   JWSTI 2024, 10(2): 75-90 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi M, Omidi M, Jabbarzare S, Bakhsheshi-Rad H R, Kasiri-Asgarani M, Ghayour H. Friction stir processing of copper/silver-silicon carbide nanocomposite: microstructure, mechanical and wear properties. JWSTI 2024; 10 (2) :75-90
URL: http://jwsti.iut.ac.ir/article-1-476-en.html
1- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran , m.kasiri.a@gmail.com
Abstract:   (92 Views)
In this research, copper/silver-silicon carbide Cu-Ag-SiC composite was prepared by the friction stir processing (FSP). For this purpose, nanometer and micrometer SiC particles were used as reinforcing particles. In order to evaluate the microstructural properties, X-ray diffraction (XRD) analysis, scanning electron microscope and optical microscope were employed. Evaluation of mechanical properties through microhardness measurement, tensile test and pin on disc test were utilized to evaluate the wear behavior of the composite. The results of X-ray analysis revealed the presence of two phases of CuAg solid solution along with SiC particles, which indicated the formation of Cu-Ag-SiC composite. The addition of nano-particles led to a significant decrease in the intensity of peaks compared to micro-particles. This indicated a decrease in the grain size of the CuAg matrix. Using the FSP in the presence of reinforcing particles and without it led to a decrease in the crystal size and average grain size compared to the sample without FSP. So that the grain size of the sample without FSP and the FSPed sample without reinforcing particles and with nano-reinforcing particles were found to be about 46.3, 19.2 and 3.6 µm, respectively. The wear mechanism in the sample before FSP was adhesive wear due to its soft nature of the matrix, and after FSP in the sample without reinforcing particles, the adhesive wear decreased and due to the addition of silicon carbide micro and nano- particles reinforcement, the wear mechanism in entirely altered to abrasive wear. Overall, it can be stated that the addition of silicon carbide nanoparticles by FSP leads to the fabrication of  Cu-Ag-SiC composite with high mechanical properties.
Full-Text [PDF 3016 kb]   (36 Downloads)    
Type of Study: Research | Subject: Special

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb