Volume 5, Issue 2 ((Journal OF Welding Science and Technology) 2020)                   JWSTI 2020, 5(2): 147-155 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabokrouh M. Experimental determination of the carburizing effect on tensile strength, impact strength, fatigue, residual stress of nano girth welding on microalloy steel. JWSTI 2020; 5 (2) :147-155
URL: http://jwsti.iut.ac.ir/article-1-283-en.html
Abstract:   (5274 Views)
In this article the effects of carburizing heat treatment on girth weld with containing titanium oxide and titanium carbide nanoparticles (X-65 grade of gas pipeline) is evaluated. The charpy results show that in the carburized sample containing titanium oxide and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium carbide and titanium carbide nanoparticles), has been respectively increased by 6% and 42%. Also, the ultimate strength carburized sample containing titanium oxide nanoparticles and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium oxide and titanium carbide nanoparticles) has been respectively increased by 20% and 28%. The results show that the fatigue life in both carburized nano-alloy samples has been increased. The fatigue life in the carburized sample of titanium carbide nanoparticles has increased more than that of titanium oxide nanoparticles. The fatigue test results show that in the carburized sample containing titanium carbide nanoparticles compared to the tempered sample containing titanium oxide nanoparticles, fatigue life (150-N force) has been increased by 20%. In this loading the fatigue life (tempered sample containing titanium carbide nanoparticles compared to the no heat treatment sample) has been increased by 31%. The results show that the residual stress in both carburized nano-alloy samples has been decreased The hole drilling strain gage results show that in the tempered sample containing titanium oxide oxide nanoparticles and titanium carbide nanoparticles compared to the no heat treatment sample (containing titanium oxide nanoparticles and titanium carbide nanoparticles), hoop residual stresses has been respectively decreased by 9% and 6%.
 
Full-Text [PDF 2668 kb]   (1241 Downloads)    

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb