Volume 2, Issue 1 (Journal OF Welding Science and Technology of Iran 2016)                   2016, 2(1): 57-68 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behjat A, Shamanian M, Atapour M, Ahl Sarmadi M. Effect of Heat Input on Microstructure and Mechanical Properties in Friction Stir Welding of HSLA-60 . Journal of Welding Science and Technology of Iran 2016; 2 (1) :57-68
URL: http://jwsti.iut.ac.ir/article-1-76-en.html
Abstract:   (8323 Views)

High-strength low alloy steels are a class of steels used in applications that require high strength and good weldability, including ship hulls, gas pipelines and oil industry. One way to build parts is fusion welding that create areas with a large grain size in the heat-affected zone and increased susceptibility to hydrogen cracking. One way to solve this problem is to use solid state friction stir welding process. In this study, microstructural evaluation and mechanical properties of friction stir welding X-60 cross sections examined by optical microscope and by tensile and micro-hardness tests. The results indicate that changing welding parameters and thereby, change the heat input during friction stir welding have a great impact on maximum temperature and cooling rate that cause creating ferrite and bainitic ferrite in the weld zone. This change in microstructure of weld zone cause to improve mechanical properties that increase yield strength from 380 MPa to 420 MPa .Also, the friction stir process cause increasing hardness of 220 Vickers to an average of 280 Vickers and uniform distribution of hardness in the cross-section of friction stir joints.

Full-Text [PDF 7726 kb]   (898 Downloads)    
Type of Study: Research | Subject: Special

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb