Volume 6, Issue 1 (Journal OF Welding Science and Technology 2020)                   JWSTI 2020, 6(1): 1-8 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajizadeh M, Emami S, Saeid T. Influence of rotational speed on the development of microstructure in a friction stir welded 304 austenitic stainless steel. JWSTI 2020; 6 (1) :1-8
URL: http://jwsti.iut.ac.ir/article-1-290-en.html
Abstract:   (4250 Views)
Friction stir welding was conducted on AISI 304 austenitic stainless steel sheet with dimensions of
100 mm × 100 mm × 2 mm. The FSW was performed at a welding speed of 150 mm/min and rotational speeds of 400 and 800 rpm. The results showed that high frequency of low angle grain boundaries (LAGBs) were formed through dynamic recovery in the thermo-mechanically affected zone (TMAZ). Higher amount of LAGBs were developed in the TMAZ of welded sample with 800 rpm due to the higher amount of strain and heat generated. High fraction of high angle grain boundaries were formed in the stir zone (SZ) of the welded samples through the occurrence of continuous dynamic recrystallization (CDRX). A very fine microstructure developed in the sampled welded with lower rotational speed. Analysis of texture using {111} Pole figures showed the formation of shear texture components in the SZ of both welded samples. The intensity of the obtained texture for the sample welded with 800 rpm was greater. The formation of shear texture components in the SZ of both samples implied the occurrence of CDRX mechanism
Full-Text [PDF 3816 kb]   (1154 Downloads)    
Type of Study: Research | Subject: Special

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb