Volume 6, Issue 1 (Journal OF Welding Science and Technology 2020)                   JWSTI 2020, 6(1): 9-17 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Delir Nazarlou R, Omidbakhsh F, Mollaei Milani J. Effect of rotational speed in friction stir welding on the material transfer mechanism in commercial pure aluminum. JWSTI 2020; 6 (1) :9-17
URL: http://jwsti.iut.ac.ir/article-1-245-en.html
1- , f.omidbakhsh@gmail.com
Abstract:   (3757 Views)
Friction stir welding (FSW) is an economic and high quality technique at aluminum welding and joining methods. The most important factor in the soundness of this type of welding, is the mechanism of material transfer in each tool rotation. The materials transfer during the welding process involves horizontal and vertical movement that caused by extrusion process and forging force (the tilt angle due to forging force and on the other hand, shape of pin due to the extrusion process). One of the most important parameters in FSW process is the effect of rotational speed in the welded zone. In this study, the effect of rotational speed at constant welding speed, in the butt joint of pure commercial aluminum, was investigated. The results of the study showed that, increasing the rotational speed due to increases the amount of material transfer in the weld zone. The welded zone was investigated by appearance weld zone experiments and using radiography tests. Also weld zone was investigated in macro and microstructure by using cross section. Then the micro hardness testing has been used by cross section at welded zone. In order to investigate the mechanism of materials transfer during the process, the electrical resistivity test has been used to analyses the amount of materials transfer in the weld zone. Results shows that, increasing rotational speed due to increasing the amount of materials transfer in the weld zone and decreasing the amount of defects in the weld zone.
 
Full-Text [PDF 1497 kb]   (1107 Downloads)    
Type of Study: Research | Subject: Special

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb