Volume 5, Issue 2 ((Journal OF Welding Science and Technology) 2020)                   JWSTI 2020, 5(2): 51-59 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emami S, Saeid T. Microstructural evolution of 304 austenitic stainless steel in friction stir welding process. JWSTI 2020; 5 (2) :51-59
URL: http://jwsti.iut.ac.ir/article-1-179-en.html
1- Sahand University of Technology
2- Sahand University of Technology , saeid@sut.ac.ir
Abstract:   (6322 Views)
Friction stir welding (FSW) was conducted on AISI 304 austenitic stainless steel plate with 2 mm thickness. The FSW was performed at a welding and rotational speeds of 50 mm/min and 400 rpm, respectively. Microstructure observations by the optical microscopy showed that a severe grain refinement occurred in the stir zone (SZ). Electron backscattered diffraction analysis (EBSD) results indicated that high fraction of low angle grain boundaries (LAGBs) developed in the thermo-mechanically affected zone (TMAZ) through the occurrence of the dynamic recovery. Moreover, in the path from the TMAZ towards the SZ, the fraction of high angle grain boundaries (HAGBs) increased with decreasing the fraction of LAGBs through the occurrence of continuous dynamic recrystallization (CDRX). 100 Pole figure showed the formation of shear texture components of A*1 and A*2 in the SZ which implied the occurrence of CDRX mechanism.
 
Full-Text [PDF 6600 kb]   (1462 Downloads)    
Type of Study: Research | Subject: Special

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb