Search published articles


Showing 3 results for Nanocomposite

B. Sadeghi, M. Shamanian, F. Ashrafizadeh, P. Cavaliere,
Volume 4, Issue 2 (1-2019)
Abstract

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of the tool. The achieved finding revelled that the FSW of the nanocomposites produced by P/M containing bimodal sized Al2O3 reinforcement have a working window are affected by the heat input. The joint evolution revelled that the microstructure and mechanical properties of those was related to the generated heat input during the welding. It is known that dynamic recrystallization (DRX) caused grain size refinement of aluminium into stir zone. Meanwhile, it was revealed that the pinning effect of Al2O3 nanoparticles retarded grain growth of the recrystallized grains caused by dynamic recrystallization (DRX)
M.h. Nourmohammadi, M. Movahedi, A.h. Kokabi, M. Tamizi,
Volume 9, Issue 1 (5-2023)
Abstract

The miniaturization and compaction trends in electronic equipment and the removal of lead (Pb) element from solder alloys due to environmental considerations have created a great challenge in the field of designing and developing of new solder alloys. Therefore, researchers have recently focused on composite solder alloys using reinforcing particles to improve the reliability of lead-free solders. In this research, SAC0307 solder alloys (99 wt.% Sn, 0.3 wt.% Ag, and 0.7 wt.% Cu) with different percentages of cobalt microparticles were made by the Accumulative Roll Bonding (ARB) method. Then, the effect of the particles on wettability, microstructures and mechanical characteristics of solder alloys was investigated. The lowest contact angle was 23◦in 0.2 wt.% cobalt sample. By adding cobalt to the solder matrix, the size of intermetallic compounds (IMCs), Cu6Sn5 and Ag3Sn, decreased and the percentage of eutectic phases increased. The shape of the interfacial intermetallic compounds changed from scallop to layer shape by adding cobalt, and their average thickness increased about 13-71% in composite samples. The shear strength of solders increased up to 38% by enhancement of cobalt microparticles in the solder alloy containing 0.4 wt.% cobalt; however, shear strength was decreased in the composite solder containing 1 wt.% cobalt due to the agglomeration of microparticles. The shear fracture surfaces showed that the nature of the fracture changed from ductile fracture in the form of elongated dimples to brittle fracture in the form of cleavage with the increase in the percentage of cobalt microparticles. The composite solder alloys containing 0.2-0.4 wt.% Co have the best wettability behavior and tensile shear strength.

M. Rahimi, M. Omidi, S. Jabbarzare, H. R. Bakhsheshi-Rad, M. Kasiri-Asgarani, H. Ghayour,
Volume 10, Issue 2 (12-2024)
Abstract

In this research, copper/silver-silicon carbide Cu-Ag-SiC composite was prepared by the friction stir processing (FSP). For this purpose, nanometer and micrometer SiC particles were used as reinforcing particles. In order to evaluate the microstructural properties, X-ray diffraction (XRD) analysis, scanning electron microscope and optical microscope were employed. Evaluation of mechanical properties through microhardness measurement, tensile test and pin on disc test were utilized to evaluate the wear behavior of the composite. The results of X-ray analysis revealed the presence of two phases of CuAg solid solution along with SiC particles, which indicated the formation of Cu-Ag-SiC composite. The addition of nano-particles led to a significant decrease in the intensity of peaks compared to micro-particles. This indicated a decrease in the grain size of the CuAg matrix. Using the FSP in the presence of reinforcing particles and without it led to a decrease in the crystal size and average grain size compared to the sample without FSP. So that the grain size of the sample without FSP and the FSPed sample without reinforcing particles and with nano-reinforcing particles were found to be about 46.3, 19.2 and 3.6 µm, respectively. The wear mechanism in the sample before FSP was adhesive wear due to its soft nature of the matrix, and after FSP in the sample without reinforcing particles, the adhesive wear decreased and due to the addition of silicon carbide micro and nano- particles reinforcement, the wear mechanism in entirely altered to abrasive wear. Overall, it can be stated that the addition of silicon carbide nanoparticles by FSP leads to the fabrication of  Cu-Ag-SiC composite with high mechanical properties.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb